
C2Prog User Manual

Version 2.0

May 27, 2023

©2006-2023 CodeSkin, LLC

All rights reserved.

Disclaimer

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-

PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

ORCOPYRIGHTHOLDERSBE LIABLE FORANYCLAIM,DAMAGESOROTHER LIABILITY,WHETHER

IN ANACTIONOF CONTRACT, TORTOROTHERWISE, ARISING FROM,OUTOFOR IN CONNEC-

TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

NO COVENANTS, WARRANTIES OR INDEMNITIES OF ANY KIND ARE GRANTED TO THE USER

OF THIS SOFTWARE. CODESKINAND ITS LICENSORSDONOTWARRANT THAT THE SOFTWARE

WILL OPERATE UNINTERRUPTED OR THAT IT WILL BE FREE FROM DEFECTS OR THAT IT WILL

MEET YOUR REQUIREMENTS.

1

Contents

1 Introduction 3

2 Quick Start 5

2.1 Installation . 5

2.2 Supported Binary Files . 6

2.3 Programming (over RS-232) . 6

3 Detailed Description 10

3.1 Communication Protocols . 10

3.2 Programming over Serial Link . 10

3.3 Programming over JTAG . 11

3.3.1 Port configuration . 11

3.3.2 XDS110 Considerations . 12

3.4 Programming over CAN . 12

3.4.1 CAN Adapters on Windows . 13

3.4.2 CAN Adapters on Linux . 14

3.5 CRC Checksum . 14

3.6 Code Security . 16

3.6.1 DCSM . 17

3.7 OTP . 17

3.8 Programming Sequence . 17

3.9 Extended Hex Files . 18

3.10 Error Codes . 19

3.11 Command Line Options . 20

3.12 JSON RPC Interface . 22

3.12.1 Load command . 22

3.12.2 Get Status command . 23

3.12.3 Shutdown command . 23

3.13 GNU Debug Server . 23

3.14 GDB Client . 24

3.15 DLL Interface . 26

Appendices 27

A License 27

B About Bootloaders 28

C 32-bit CRC Algorithm 29

D C2Prog API 30

2

1 Introduction

C2Prog consists of a collection of tools for programming TI C2000™ MCUs.

Besides reflashing over JTAG, C2Prog also supports reflashing over RS-232, RS-485, TCP/IP

and Controller Area Network (CAN). It is, therefore, well suited for deployment in the field

where the JTAG port is typically not accessible.

Some salient features of C2Prog are:

• Ease of use and reliable operation.

• Support for multiple communication interfaces and protocols.

• Smart flash erase, or manual sector section selection.

• Automatic 32-bit CRC generation for flash integrity verification at MCU bootup.

• “Extended Hex” file format for firmware distribution (encapsulates all settings for pro-

gramming, including the secondary bootloader).

• Firmware password protection.

• Firmware encryption.

• Fast serial communicationprotocol thatworks reliablywithUSB-to-RS-232 converters.

• Communication protocol compatible with multidrop networks (RS-485).

• Support for Texas Instruments XDS JTAG emulators.

• CAN communications based on ISO-14229/15765.

• GNU debug (GDB) server stub.

• Command-line and DLL interface for batch programming and integration of C2Prog

functionality into other applications (requires “professional” or “integration” license

for C2Prog –- see our CodeShop).

• JSON-RPC server for using C2Prog from a CI/CD pipeline.

• Flexible and modular design allowing for customer specific solutions.

• Small footprint application.

• Cross-platform (Windows, macOS, Linux) binaries for Intel and ARM.

3

http://codeskin.com

C2Prog includes the following modules:

• C2Prog –– graphical user interface

• c2p-cli –– headless command line interface

• c2p-server –– JSON-RPC server

• c2p-gdb –– GDB client with support for scripting

4

2 Quick Start

2.1 Installation

The most recent version of the programmer can be downloaded from the C2Prog website:

https://c2prog.com/download/

For Windows, an installer executable is provided. C2Prog can also be uninstalled from the

control panel similar to other Windows software.

For macOS, the C2Prog application is distributed as a disk image. Simply mount the image

and copy the application to a location of your choosing.

For Linux, the application files are contained in a self-extractablemakeself shell script.

When the programmer is launched for the first time, an option is presented to check if a

newer version is available. It is highly recommended that the most recent version be in-

stalled.

If the Automatically check for updates option is enabled, the programmer will periodically

query the update-server to check if a newer version of the application is available.

T Privacy: When communicating with the CodeSkin update-server, C2Prog will

transmit the C2Prog version number and installation ID. The web server will further have

access to the public IP address of the network from which the request is made. CodesSkin

may use this data for compiling anonymous statistics. However, no proprietary or

personally identifiable data is ever transmitted or collected.

5

https://c2prog.com/download/
https://makeself.io/

2.2 Supported Binary Files

C2Prog supports all binary files generatedby the TI codegen tools, including COFF/ELF (*.out)

files and Intel hex (.hex) files.

If you want to use hex files with C2Prog, then you must generate them as follows:

C2400 Tools:

dsphex -romwidth 16 -memwidth 16 -i -o .\Debug\code.hex .\Debug\code.out

C2000 Tools:

hex2000 -romwidth 16 -memwidth 16 -i -o .\Debug\test.hex .\Debug\test.out

ARM Tools:

armhex -romwidth 8 -memwidth 8 -i -o .\Debug\test.hex .\Debug\test.out

2.3 Programming (over RS-232)

This section demonstrates the use of C2Prog in conjunction with TI’s SCI bootloader. Please

refer to the TI Boot ROM Reference Guides for information on how to configure your target

for SCI programming. In order to operate with the C2Prog default settings, the serial link

must be capable of full duplex communication at 115200 baud. Slower links are supported,

but will require custom settings.

6

Activate the Flasher tab and select the Firmware Image (binary file) by means of the …

popup menu.

Raw binary files do not define any target specific programming information such as the type

of MCU to be flashed, the oscillator frequency, the communication protocol to be used, etc.

Youmust therefore configure this information in the Programming Configuration section by

choosing the appropriate MCU part-name and option (e.g. clock frequency and communi-

cation interface - see Section 3.11 on page 20). Contact CodeSkin at info@codeskin.com if

no match is found for your hardware.

Next click on Configure… to open the configuration dialog.

For programming a locked C2000™ MCU, valid CSM keys (passwords) must be provided as

4 digit hex numbers (with ’0x’ or ’$’ prefix). In the case of 32-bit keys, each key is split into

two 16-bit keys in big endian (BE) order. Note that contrary to the other fields, keys are not

remembered as defaults.

Now you must select which flash sectors should be erased prior to programming. This is ei-

ther donemanually by checking the individual boxes, or by choosing Smart Sector Selection.

The smart sector feature automatically detects which sectors require erasing by parsing the

contents of the binary file.

7

mailto:info@codeskin.com

As a further option, Append Checksum can be selected, which instructs the programmer to

append a 32-bit CRC checksum to the hex data. This checksum can be used by the MCU to

verify the integrity of the flash data, as described later in this document.

Once all the programming configurations are made, configure the COM port, either by typ-

ing its name directly into the text-field, or clicking on the Select Port… button. Valid entries

for the serial port on the windows platform are COM1, COM2, etc.

The Scan Ports button in the port selection dialog automatically scans for all available serial

ports. Please note that on some computers this feature can take some time to execute, es-

pecially if Bluetooth COM ports are present.

Now the reflashing process can be started by clicking the Program button. This will open a

newwindowwhich displays status informationwhile the programming progresses, as shown

below.

" Do not power-cycle or reset the target during programming.

8

Finally, you may save the programming configuration combined with the firmware image to

an Extended Hex file by clicking on the Save as ehx… button. When this file is subsequently

selected in C2Prog, all programming settings are automatically configured. This format is

thus recommended for distributing firmware images.

9

3 Detailed Description

3.1 Communication Protocols

C2Prog supports a number of communication protocols and interfaces. Originally designed

with a focus on serial communication (RS-232/485), C2Prog also supports TCP/IP, Controller

Area Network (CAN) and JTAG. The communication protocol is selected by means of drop-

down fields in the Programming Configuration. Shown below are some examples:

A few comments about target options:

• Frequency values, e.g. 24MHz, specify the external clock/crystal frequency.

• Options without explicit frequency value use the internal oscillator of the MCU.

• INTOSC also refers to the internal oscillator.

• The qualifier after the frequency parameter specifies the communication interface,

e.g. SCI, CAN. The default interface is SCI, i.e. 24MHz stands for SCI communication

with an external clock of 24 MHz.

• Options can also refer to customer specific configurations, such as in the XCANUDS-

192.1 example.

3.2 Programming over Serial Link

The serial interface can be used with TI’s SCI bootloader as well as customer specific boot-

loaders developed by CodeSkin. Please refer to the TI Boot ROM Reference Guides for infor-

mation on how to configure your target for SCI programming. In order to operate with the

C2Prog default settings, the serial link must be capable of communicating at 115200 baud

and support full duplex-transmission. Slower links and half-duplex operation are supported,

but will require custom settings.

10

C2Prog works most reliably with converters that utilize the FTDI chipset. A good choice, for

example, is the Parallax USB to Serial Adapter. The serial port of TI’s evaluation hardware is

also proven to work well with C2Prog.

3.3 Programming over JTAG

C2Prog supports TI XDS emulators for flash programming and in conjunction with the GDB

server (see Section 3.13 on page 23).

When you install C2Prog on Windows, an option is given to also install TI’s XDS drivers and

EmuPack. Alternatively, youmay point C2Prog to an existing installation of the EmuPack, for

example within Code Composer Studio (CCS) or UniFlash.

The manual configuration is done by means the c2p-cli executable:

c2p-cli set ccs-base-path C:\ti\ccs<version>\ccs\ccs_base

If you are using CCS for code development, it may be desirable that C2Prog use the same

EmuPack version. Referring to an existing installation of the EmuPack can also save disk

space.

On non-Windows machines, the manual configuration is required to enable programming

over JTAG.

3.3.1 Port configuration

" It is extremely important that the correct external clock/crystal frequency is

selected, as C2Prog has no means of verifying the frequency when using JTAG. Selecting

the wrong frequency may damage the MCU.

The port configuration must be formatted as follows:

• xds100v<v>:<sn>:<pid>

• xds110:<sn>

11

• xds110-2w:<sn>

• xds2xx

where <v>must be equal to ”1”, ”2”, etc, <sn> is the serial number of the emulator (if several

are connected), and <pid> is the USB PID of the emulator hardware in hex notation. The

“2w” postfix specifies use of the 2-pin cJTAG mode. Both the <sn> and <pid> parameters

are optional. The default value for <pid> is 0xa6d0. Some examples for valid configuration

strings include:

• “xds100v1”, “ xds100v2”, “ xds100v3”, “ xds110”, “ xds110-2w”,

• “xds100v2:TIUDCI83”

• “xds100v2:TIUDCI83:6010”

• “xds100v2::6010”

The serial number of a particular unit can be determined by means of the command-line

utility stored in the ccs_base\common\uscif\ftdi\utility directory.

3.3.2 XDS110 Considerations

C2Prog can be configured to automatically upgrade/downgrade the firmware of XDS110 em-

ulators. This feature is disabled by default but may be enabled by means of the c2p-cli exe-

cutable as follows:

c2p-cli set xds110-auto-update on

The firmware update process is not always 100% reliable. Should your XDS110 emulator

become unresponsive, open a command-line prompt, navigate to the ccs_base\common\
uscif\xds110 folder and execute the following sequenceof commands to restore thefirmware.

xdsdfu -m
xdsdfu -f firmware.bin

The location of the EmuPack used by C2Prog can be queried as follows:

c2p-cli get ccs-base-path

3.4 Programming over CAN

C2Prog allows programming over CAN using the “Unified Diagnostics Protocol” as defined

in ISO-14229/15765 (requires custom CodeSkin CAN bootloader).

A special convention is used to allow for the configuration of custom bit-timings. In lieu of a

normal baudrate, e.g. “250000”, it is possible to specify the BTR0 and BTR1 values directly

12

as “0x8000<BTR1><BTR0>”, where BTRx stands for the bit-timing registers of the SJA1000

(or compatible) CAN controller, assuming a clock frequency of 16MHz. For example, a value

of 0x80001C03 specifies 87.5% sampling at 125 kbit/s.

When configuring CAN identifiers in the Configure… dialog, they can be entered as hex num-

bers (with ’0x’ or ’$’ prefix) or decimal numbers. An ’X’ postfix specifies an extended CAN

identifier.

CodeSkin’s custom CAN bootloaders offer a mechanism to recover from unresponsive appli-

cation code. This Activate Bootloader feature can be accessed from the Actions…menu.

See notes on bootloaders in the Appendix B on page 28 for more information regarding CAN

bootloaders. We also encourage our users to contact CodeSkin for custom solutions.

3.4.1 CAN Adapters on Windows

OnWindows, CAN hardware fromVector, Kvaser, Lawicel, NI, and PEAK-System is supported.

The syntax for the port configuration is as follows:

13

mailto:info@codeskin.com

• Lawicel: “canlw:0” – only one port supported

• Kvaser: “cankv:<n>” – where <n> is the port number (0 or 1)

• Vector: “canvec:<n>” – where <n> is the port number (0 or 1)

• NI-XNET: “canxnet:<n>” – where <n> is the port assigned to the adapter

• Peak CAN: “canpk:<n>” –where <n> is the device number as configured in PCAN-View,

e.g. 255; other channels on the same device are identified as “255B”, “255C”, etc

3.4.2 CAN Adapters on Linux

On Linux, SocketCAN is used for accessing a wide range of supported CAN hardware. The

port configuration is done according to the name of the device, i.e. the netdev name, as

reported by ifconfig -a or ip link show, for example ”can0”.

SocketCAN interfaces must be configured (requires root privileges) from the command line

before starting a programming session.

sudo ip link set can0 type can bitrate 500000
sudo ip link set up can0

3.5 CRC Checksum

C2Prog can be configured to automatically append a 32-bit CRC to the code being pro-

grammed into flash. This allows for the embedded application to verify the flash integrity

at each powerup or even periodically during operation.

14

If the Append CRC box is checked, or the “--crc” command line option is used, C2Prog will

first parse the binary-file and determine the lowest and highest address to be programmed.

For a 240x MCU, this includes the CSM zone (4 keys), for a 28xx MCU, the CSM zone is ig-

nored (including keys, reserved words, and program entry point). Next, the 32-bit CRC is

calculated and appended at the top of the memory, i.e. at the two addresses above the

highest address of the hex-file determined before. In addition, a CRC delimiter, one zero

word (0x0000), is placed above the two CRC words.

The 32-bit CRC algorithm used has the following parameters:

• Polynomial: 0x04c11db7

• Endianess: big-endian

• Initial value: 0xFFFFFFFF

• Reflected: false

• XOR out with: 0x00000000

Test stream: 0x0123, 0x4567, 0x89AB, 0xCDEF results in CRC = 0x612793C3. Please refer to

Appendix C on page 29 of this manual for a CRC32 implementation example.

In contrast to a typical data-stream with the CRC transmitted at the end, the C2Prog CRC

must be verified by processing the flash data starting with the CRC, i.e. one memory ad-

dress below the CRC delimiter (0x0000). A successful data-verify results in a CRC register

value of zero (0x00000000).

A typical flash verification algorithm running at MCU powerup executes as follows:

1. Set a memory pointer to the highest possible program address.

2. Decrement the pointer until it points to the CRC delimiter (0x0000), skipping all 0xFFFF

values.

3. Decrement the counter by one more address (at which time it points to the first CRC

word).

4. Initialize the CRC register to 0xFFFFFFFF.

5. Update the registerwith the value addressed by thememory pointer (CRC polynomial:

0x04C11DB7).

6. Decrement memory pointer.

7. Repeat 5-6 until the memory pointer reaches the lowest program address.

15

8. If, at this point, the register holds 0x00000000, then the data integrity has been suc-

cessfully verified.

Sample Code for 28xx with code in flash sector A:

#define FLASH_TOP (const uint16_t*)(0x3F7F7FL)
#define FLASH_BOT (const uint16_t*)(0x3F6000L)

const uint16_t* FlashPtr;
uint32_t CRCRegister;

FlashPtr = FLASH_TOP;
// search for CRC delimiter
while((*FlashPtr != 0x0000) && (FlashPtr > FLASH_BOT)){
FlashPtr--;

}
// process stream, CRC first
CRCRegister = 0xFFFFFFFFL;
while(FlashPtr > FLASH_BOT){
FlashPtr--;
// each CRC32Step() shifts one byte into the CRC register
CRCRegister = CRC32Step1(((*FlashPtr >> 8) & 0xFF), CRCRegister);
CRCRegister = CRC32Step(((*FlashPtr >> 0) & 0xFF), CRCRegister);

}
// at this point CRCRegister should be reading zero

3.6 Code Security

C2Progwill unlock the code securitymodule (CSM) using the keys providedwith the ”--keys”
command-line option or Configure… dialog. In the case of 32-bit keys, each key is split into

two 16-bit keys in big endian (BE) order.

For older C2000 MCUs with the keys located at a fixed locations in erasable flash memory,

C2Prog will extract the keys from the firmware image if default keys of all 0xFFFF are pro-

vided.

If theMCUs has the PSWDLOCKmechanism, specifying all 0x0000 in C2Prog (--keys, Config-
ure…) will instruct C2Prog to unlock the CSMby reading the unprotected password locations

in OTP.

" The security zone will not be truly protected until the corresponding PWDLOCK is

set. Please make sure that you review the relevant documentation from TI.

16

3.6.1 DCSM

In case of MCUs with dual code security module (DCSM), C2Prog will automatically deter-

mine which zone must be unlocked in order to program a particular firmware image.

T It is only possible to program one security zone at a time.

" Do not set the PWDLOCK of a zone unless the sector assignment for that zone has

been fully configured by either explicitly requesting, or not requesting, the zone for each

sector. See TI technical documentation of GRABSECT and GRABRAM registers.

3.7 OTP

C2Prog helps prevent unintentional writing to one-time programmable (OTP) memory. Un-

less the user generates the Extended Hex file with the ”--allow-otp” option or checks the

Allow OTP Programming box, C2Prog will not permit the programming of OTP locations.

3.8 Programming Sequence

The reflashing process is typically divided into two phases:

• Phase 1: Download of secondary bootloader (SBL)

• Phase 2: Execution of SBL, erasing of flash, download of application / flash program-

ming

T The programming of some targets may require additional download stages to deal

with memory restrictions.

17

The screen capture below further illustrates the programming sequence for the serial mode

in conjunction with TI’s SCI bootloader. Please refer to the Appendix B on page 28 for more

information on bootloaders.

3.9 Extended Hex Files

The programming configuration, secondary bootloader, and contents of the binary file can

be combined and saved as an “Extended Hex File” (*.ehx). This format is preferable over the

raw binary file as it allows programming without requiring any manual configuration of the

programmer options. An Extended Hex file can also be password protected. Thus, it is the

ideal format for distributing programming files while also avoiding unauthorized use.

From the graphical user interface of the programmer an ehx file can be generated by clicking

on the Save as ehx… button. The same can be done by calling C2Prog via its command line

18

options, as below:

c2p-cli mkehx --target=28335_30MHz test.out

The target name corresponds to the concatenation of the target name and option, separated

by an underscore (see page 28). It is recommended that this command be configured as a

post-build step in Code Composer Studio:

"C:\Users\joe\AppData\Local\Programs\C2Prog 2.x\c2p-cli.exe" mkehx --target
,→ =28335_30MHz ${BuildArtifactFileBaseName}.out

3.10 Error Codes

If an error occurs during programming, either a single error code or a pair of primary/sec-

ondary codes is displayed.

A singe number, or the primary code of a pair must be interpreted based on the type ofMCU

that is being programmed.

In case of 240x, 280x, 2802x, 2803x, 2805x, 2806x, 2823x and 2833x devices, the value cor-

responds to the error code reported by the TI flash API. Please refer to the relevant technical

documentation for details.

For all other processors, and custombootloaders licensed fromCodeSkin, the single number,

or primary code of a pair, indicates the following:

• 1: Unknown error

• 2: Feature not supported

• 3: Unlock error

• 4: Invalid size or alignment

• 5: Buffer overflow

• 6: Invalid address

• 7: Illegal sector

• 8: Erase error

• 9: Write error

19

• 10: Flash pump error

• 11: Flash FSM error

• 12: OTP ECC write error

• 13: OTP data write error

The secondary code of a pair identifies the flash API specific error code. When the primary

code reads ”Flash FSM error”, the secondary code corresponds to the value of the FSM sta-

tus. Please review the TI technical documentation for more details or contact CodeSkin for

assistance.

3.11 Command Line Options

C2Prog can be launched from a command prompt (shell) with command-line options. This

feature is available to facilitate the creation of ehx files as part of the code generation (for

example, as a “final build step” in Code Composer Studio™). Users with a “professional” or

“integration” C2Prog license can also program MCUs via the command line and extract hex

files from ehx files.

The corresponding executable is c2p-cli.

c2p-cli accepts the following primary commands and options:

c2p-cli --help Display help

c2p-cli --version Display version information

c2p-cli mkehx [options] Create ehx file

c2p-cli load [options] Program ehx file (licensed users only)

c2p-cli extract [options] Extract hex file form ehx file (licensed users only)

The command for creating an ehx file is

c2p-cli mkehx --target=<target> [options] <binary file> [<ehx file>]

The <target> parameter corresponds to the concatenation of the target name and option,

separated by an underscore (see page 28).

For example, the following command creates an extended hex file that is protected by a

passphrase. All keys to unlock the flash are specified as 0x1234 and the sectors selected to

be erased are A,B,C and D (hex 0xF = binary 1111).

c2p-cli mkehx --target=2811_30MHz c:\test.out --keys
,→ =1234,1234,1234,1234,1234,1234,1234,1234 --sector-mask=F --append-
,→ crc --passphrase="very secret"

The command for programming an ehx file is

c2p-cli load --port=<port> [options] <ehx file>

20

mailto:info@codeskin.com

For example

c2p-cli load --port=COM5 test.ehx

The command for extracting a hex file is

c2p-cli extract [options] <ehx file> [<hex file>]

mkehx options

--target=TARGET_ID Selects the target – the target ID is composed of the tar-

get name, followed by an underscore “_” and the target

option, for example “2812_30MHz”.

--keys=KEY1,KEY2,… Configures keys for unlocking flash (optional), KEYn is

in 16-bit hex notationwithout ’0x’ prefix. In the case of

32-bit keys, each key is split into two 16-bit keys in big

endian (BE) order. E.g. keys 0x01234567, 0x89ABCDEF,

0x11112222, 0x33334444 are specified as --keys=
0123,4567,89AB,CDEF,1111,2222,3333,4444.

--sector-mask=SECTOR_MASK Configures which flash sectors are erased, where

SECTOR_MASK is a hex number:

--sector-mask=1: sector A

--sector-mask=2: sector B

--sector-mask=3: sectors A & B

--sector-mask=A: sectors B & D

If the “--sector-mask” option is not used, then sectors

to be erased are automatically detected.

--append-crc Enables addition of CRC checksum (optional)

--allow-otp Allows OTP programming (optional)

--passphrase=PASS_PHRASE Passphrase for extended hex-file

--bitrate=BIT_RATE Bit-rate for some protocols (such as CAN)

--ta=TARGET_ADDRESS Target-address for multidrop protocols (such as CAN)

--sa=SOURCE_ADDRESS Source address for multidrop protocols (such as CAN)

load options

--port Specifies communication port

--passphase=PASS_PHRASE Passphrase for extended hex-file

--print-progress Enables the display of progress information

extract options

--passphase=PASS_PHRASE Passphrase for extended hex-file

21

3.12 JSON RPC Interface

The C2Prog functionality can be accessed via JSON RPC, a lightweight remote procedure call

protocol.

The executable for launching the JSON RPC server is c2p-server.

c2p-server --rpc-port=<port>

For example

c2p-server --rpc-port=8080

A JSON RPC client can then connect to the C2Prog server and issue remote procedure re-

quests.

3.12.1 Load command

The loadmethod initiates a programming session.

{
"method": "load",
"params": {
"file":"<ehx file path>",
"port":"<port>",
"passphrase":"<passphrase>"

},
"jsonrpc": "2.0",
"id": 0

}

For example:

{
"method": "load",
"params": {
"file":"c:\test.ehx",
"port":"COM5",
"passphrase":"very secret"

},
"jsonrpc": "2.0",
"id": 0

}

The server response to the load command is formatted as follows:

{
"result": {
"info":"",
"error":"<error description>",

22

https://www.jsonrpc.org/

"progress":0.0
},
"jsonrpc": "2.0",
"id": 0

}

A non-empty error string signals that the load command failed.

3.12.2 Get Status command

The get_statusmethod can be used to query the status of on ongoing flashing session.

{
"method": "get_status",
"jsonrpc": "2.0",
"id": 0

}

The response to get_status is identical to the loadmethod response:

{
"result": {
"info":"<status description>",
"error":"<error description>",
"progress":<[0.0-1.0]>

},
"jsonrpc": "2.0",
"id": 0

}

The programming session is complete once progress reaches 1.0. If an error occurs, it is

indicated my means of the error field.

3.12.3 Shutdown command

The server can be shut down by means of the shutdownmethod.

{
"method": "shutdown",
"jsonrpc": "2.0",
"id": 0

}

3.13 GNU Debug Server

For primarily experimental purposes, C2Prog includes a rudimentary GNU Debug Server

stub.

23

A few notes about the server implementation:

• C28 cores have a 16-bit wide architecture. Memory access must therefore be made

with an even number of bytes, where each pair of bytes is interpreted as a little endian

16-bit value.

• The server accepts multiple connections. This allows issuing a a blocking ’continue’

command and subsequently accessing theMCU, while it is running, through a second

connection.

T The functionality of the Gdb server is still subject to change without notice. Please

contact us if you wish to use this feature for important work.

3.14 GDB Client

C2Prog includes a GDB client c2p-gdb that can be used to interact with a GDB server, such

as the C2Prog GDB stub, Segger J-Link GDB Server or OpenOCD.

24

https://openocd.org/

c2p-gdb accepts the following primary commands and options:

c2p-gdb --help Display help

c2p-gdb script [options] <filename> Run Lua script

c2p-gdb load [options] <filename> Load binary file

c2p-gdb options

--endian=[big]/[little] Target endianess

--lausize=<lau size> Size of least addressable unit

--url=<server url> Server URL

--port=<server port> Server port

--nvic=<nvic base> NVIC base address (ARM only)

--server-cmd=”<cmd>” GDB server launch command

--server-start-
delay=<delay>

Server startup delay [ms]

The following command connects to port 3333 of a GDB server and executes the script con-

tained inmy_script.lua:

./c2p-gdb script --port 3333 my_script.lua

Scripts are written in the Lua programing language using gdb methods to interact with the

Gdb server. See the <c2prog-installation-path>/scripts folder for examples.

-- reset target
gdb.restart()
-- configure boot from flash
gdb.write_memory(0xD00, {0x55aa, 0x0b}, 2)
-- start application
gdb.cont()

The next command connects to port 3333 of a GDB server and programs a target with the

binary filemy_firmware.elf. Note that providing the --nvic option for ARM processors will

run the application automatically after it has been programmed.

./c2p-gdb load --port 3333 --nvic 0x8000000 ~/Desktop/my_firmware.elf

With the --server-cmd and --server-start-delay options it is possible to automatically

launch the GDB server for the duration of the interaction with the GDB client.

./c2p-gdb load --server-cmd="~/opt/openocd/bin/openocd -s ~/opt/openocd/
,→ share/openocd/scripts -f board/stm32g431.cfg" --server-start-delay
,→ 1000 --port 3333 --nvic 0x8000000 ~/Desktop/my_firmware.elf

25

https://www.lua.org/

3.15 DLL Interface

The C2Prog programming functionality is being exported via a Dynamic-Link Library (DLL)

for use by other applications, such as end-of-line (EOL) test-stands or field support tools 1.

With the ”c2p” C2Prog DLL, flash programming capability can easily be added to custom

applications generated by virtually any toolchain, including NI LabView.

Below is a list of the function calls that are exposed by the C2Prog DLL. Please refer to the

Appendix D on page 30 for a more detailed description of the API.

• c2pInitializeLibrary –– initializes the C2Prog environment

• c2pProgram –– starts programming session (programs flash)

• c2pGetStatus— retrieves information about the progress of the flash programming

• c2pGetErrorDescription –– retrieves a textual description (string) for a given error

code

• c2pCloseProgrammingSession –– terminates a programming session.

The function c2pProgram can be called as “blocking” or “non-blocking”. In blocking mode,

the function will not return until the programming has completed (successfully, or with an

error). In the non-blocking mode, the function returns immediately, and the progress of

the programming (and its success) must be polled by means of the c2pGetStatus call. This

allows the application using the C2Prog DLL, to display progress information while the pro-

gramming takes place.

1The DLL interface is only available with the professional license of C2Prog.

26

The C2Prog DLL is implemented as a wrapper around the c2p-cli executable. Therefore, the

DLL must be able to locate c2p-cli. OnWindows, the DLL will read the entry in theWindows

registry that the C2Prog installer creates.

An alternate mechanism for specifying the location of the c2p-cli executable is the use of a

c2p.config configuration file, located in the same directory as the DLL itself.

The c2p.configmust contain a single line with a quoted string. Several options exist for how

to provide the path:

1. Specification of an absolute path

2. Specification of a relative path

3. Specification of a registry key, which contains the absolute path (Windows only)

The example below illustrates the first option, specifying an absolute path. Note how the

path has to be provided as a quoted string.

"/home/user/opt/c2prog_v2.x"

Alternatively, a relative path can be specified by using the “$”-prefix. The path is then inter-

preted to be relative to the “c2p.config” file (and, hence, the C2Prog DLL). This is shown in

the next example.

"$/C2Prog"

The third option specifies a Windows HKCU registry key that contains the absolute path to

the c2p-cli binary. The special character “@” is used to identify this option, as shown below.

The DLL will then read the value named ”InstallPath” at the provided registry path.

"@\SOFTWARE\MyApp\C2Prog"

The DLL binaries and header file are located in the {C2Prog}\api folder. Examples for

how to use the API from different programming languages can be found in {C2Prog}\api\
examples.

Appendices

A License

C2Prog is governed by the licensing agreement as stated in the file C2Prog-License.pdf
available for download at https://c2prog.com/license and also located in the data
folder of the C2Prog installation.

27

https://c2prog.com/license

BY USING THIS SOFTWARE YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT.

PLEASE READ IT CAREFULLY.

Exceptwhere otherwise noted, all of the documentationand software included in theC2Prog

package is copyrighted by CodeSkin, LLC.

Copyright (C) 2006-2023 CodeSkin, LLC. All rights reserved.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-

PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

ORCOPYRIGHTHOLDERSBE LIABLE FORANYCLAIM,DAMAGESOROTHER LIABILITY,WHETHER

IN ANACTIONOF CONTRACT, TORTOROTHERWISE, ARISING FROM,OUTOFOR IN CONNEC-

TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

NO COVENANTS, WARRANTIES OR INDEMNITIES OF ANY KIND ARE GRANTED TO THE USER

OF THIS SOFTWARE. CODESKINAND ITS LICENSORSDONOTWARRANT THAT THE SOFTWARE

WILL OPERATE UNINTERRUPTED OR THAT IT WILL BE FREE FROM DEFECTS OR THAT IT WILL

MEET YOUR REQUIREMENTS.

C2Prog is using several open source software packages. For a comprehensive list of the

libraries used, and their respective license conditions, please refer to Help→About C2Prog.

B About Bootloaders

When programming, C2Prog is interacting with a so called “bootloader” running on the tar-

get. This bootloader is often divided into two components:

• Primary Bootloader (PBL): The primary bootloader is a small piece of code that is per-

manently programmed into the target and called immediately after reset. The primary

bootloader can branch to the application code (if present) or receive the secondary

bootloader (SBL) into RAM over the communication link and execute it. The primary

bootloader typically also includes a security algorithm for unlocking the chip before

the secondary bootloader can be loaded.

• Secondary Bootloader (SBL): Contrary to the primary bootloader, the secondary boot-

loader is not permanently stored in the target. Instead, it is being loaded via the pri-

mary bootloader when needed. The SBL contains the flash programming algorithms.

It erases the flash, receives the application code over the communication link, and

programs the flash memory. Upon completion, the secondary bootloader can reset

the chip.

28

Almost all C2000™ MCUs ship with a primary bootloader programmed into the boot-ROM.

While this bootloader supports several communication interfaces, only the SCI mode (RS-

232) is of practical use in the field (the CAN implementation is too limited). CodeSkin has

developed secondary RS-232 bootloaders formost C2000™MCUs and distributes themwith

the C2Prog programming tool. The compiled versions of the secondary bootloaders are free;

if so desired, the source code can be licensed for a fee.

CodeSkin also develops custom primary bootloaders that can be used in lieu of the TI ver-

sion. They are licensed as source code, and allow for the implementation of customer spe-

cific features, such as servicing an external watchdog, and proprietary security/encryption

algorithms. The CodeSkin primary bootloaders also support communication protocols other

than RS-232. For example half-duplex RS-485, TCP/IP and CAN bus. Along with the primary

bootloader, the source code of a matching secondary bootloader is provided.

C 32-bit CRC Algorithm

A basic implementation of a 32-bit CRC algorithm, optimized for code space, is provided in

the listing below.

// 32-bit CRC lookup table (poly = 0x04c11db7)
uint32_t CRC32Lookup[16]={
0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L,
0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L,
0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L,
0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL
};

uint32_t CRC32StepNibble(uint16_t nibbleIn, uint32_t crc){
uint16_t index;
index = (uint16_t)(crc >> 28);
crc = ((crc << 4) | (uint32_t)(nibbleIn)) ^ CRC32Lookup[index];
return(crc);

}

uint32_t CRC32Step(uint16_t byteIn, uint32_t crc){
uint16_t nibble;

// first nibble
nibble = (byteIn >> 4) & 0x0F;
crc = CRC32StepNibble(nibble, crc);

// second nibble
nibble = (byteIn) & 0x0F;
crc = CRC32StepNibble(nibble, crc);

29

return(crc);
}

D C2Prog API

The following functions are provided by the C2Prog DLL. All API calls return a status infor-

mation c2pStatus of type int. Use c2pGetErrorDescription to obtain an error description.

c2pStatus c2pInitializeLibrary()

Initializes the programming environment. Must be called by the application prior to

using any other API functions.

Returns:

• zero (0), if call successful,

• error code, otherwise – use c2pGetErrorDescription for description of error

c2pStatus c2pProgram

(char* fileName, char* password, char* protocol, char* port, short wait)

Initiates flash programming. Note that only one flash programming session can be ac-

tive at any time.

Parameters:

• fileName: Full path and name of ehx file

• password: Password to decrypt ehx file. If no password is used, provide an empty

string (“”).

• protocol: Reserved for future use. The string “default” is recommended.

• port: Name of communication port

• wait: If set to 0, the function launches the programming session and returns im-

mediately. Otherwise, the call blocks until the programming session terminates.

Returns:

• zero (0), if call successful,

• error code, otherwise – use c2pGetErrorDescription for description of error

Example:

c2pProgram("D:\\data\\Firmware.ehx", "", "default", "XDS100v2", 1);

30

c2pStatus c2pGetStatus

(int *state, double *progress, char* stateInfo, int infoStringMaxLen)

Obtains status information while programming session is active. This function is typi-

cally used after a non-blocking call to c2pProgram to display progress, status and error

information. If a fault occurred during programming, the function returns an error code

and the value of state indicates in which state the error occurred.

Parameters:

• state

0. Idle

1. Active

2. Done

3. Failed

• progress: Completion rate (0.5 = 50%, 1.0 = 100%)

• stateInfo: String describing state – memory allocated by caller

• infoStringMaxLen: Number of bytes allocated by caller to stateInfo string

Returns:

• zero (0), if call successful,

• error code, otherwise – use c2pGetErrorDescription for description of error

c2pStatus c2pCloseProgrammingSession()

Stops active programming session.

Returns:

• zero (0), if call successful,

• error code, otherwise – use c2pGetErrorDescription for description of error

31

c2pStatus c2pGetErrorDescription

(c2pStatus error, char* errorDescription, int errorStringMaxLen)

Obtains description for error code.

Parameters:

• error: Status returned by any of the API calls

• errorDescription: String describing error – memory allocated by caller

• errorStringMaxLen: Number of bytes allocated by caller to the errorDescription

string

Returns:

• zero (0) if call successful,

• error code, otherwise

c2pStatus c2pGetProgressInfo

(int *state, double *progress, char* stateInfo, int infoStringMaxLen)

This function is deprecated and only provided for backward compatibility .

Obtains status information while programming session is active. This function is typi-

cally used after a non-blocking call to c2pProgram to display progress, status and error

information. If a fault occurred during programming, the function returns an error code

and the value of state indicates in which state the error occurred.

Parameters:

• state

0. Idle / Done

1. Running

• progress: Completion rate (0.5 = 50%, 1.0 = 100%)

• stateInfo: String describing state – memory allocated by caller

• infoStringMaxLen: Number of bytes allocated by caller to stateInfo string

Returns:

• zero (0), if call successful,

• error code, otherwise – use c2pGetErrorDescription for description of error

32

	Introduction
	Quick Start
	Installation
	Supported Binary Files
	Programming (over RS-232)

	Detailed Description
	Communication Protocols
	Programming over Serial Link
	Programming over JTAG
	Port configuration
	XDS110 Considerations

	Programming over CAN
	CAN Adapters on Windows
	CAN Adapters on Linux

	CRC Checksum
	Code Security
	DCSM

	OTP
	Programming Sequence
	Extended Hex Files
	Error Codes
	Command Line Options
	JSON RPC Interface
	Load command
	Get Status command
	Shutdown command

	GNU Debug Server
	GDB Client
	DLL Interface

	Appendices
	License
	About Bootloaders
	32-bit CRC Algorithm
	C2Prog API

